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Mechanical properties of a model of attractive colloidal solutions

E. Zaccarelli,1 G. Foffi,1 K. A. Dawson,1 F. Sciortino,2 and P. Tartaglia2
1Irish Centre for Colloid Science and Biomaterials, Department of Chemistry, University College Dublin, Belfield, Dublin 4, Irela

2Dipartimento di Fisica, Universita` di Roma La Sapienza and Istituto Nazionale di Fisica della Materia,
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We review the nature of glass transitions and the glasses arising from a square-well potential with a narrow
and deep well. Our discussion is based on the mode coupling theory~MCT!, and the predictions of glasses that
we make refer to the ‘‘ideal’’ glasses predicted by this theory. We believe that the square-well system well
represents colloidal particles with attractive interactions produced by grafted polymers, or depletion interac-
tions. It has been recently shown that two types of glasses, an attractive and a repulsive one, are predicted by
MCT for this model. The former can form at quite low densities. Most of our attention is directed at the
mechanical properties of the glasses predicted by this theory. In particular we calculate the elastic shear
modulus at zero frequency and the longitudinal stress modulus in the long wavelength limit. Results for both
are presented along the glass-liquid transition curves and their interesting behavior is explained in terms of the
underlying physics of the system.
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I. INTRODUCTION

In recent years the idea that colloidal particles can fo
glassy structures has been established in a number of
interesting experimental and theoretical works. Most att
tion has been focused on colloidal particle systems that
dominated by repulsive interactions for which, at high pa
ing fraction values, the glass represents an alternative p
ing to the usually more favorable crystal structure. The
systems are well represented by a simple hard sphere m
@1#. Where repulsive interactions dominate, the loss of
godicity is lost due to blocking of the movements of partic
by the quite dense surrounding cages formed by their nea
neighbors. In colloidal systems, mode coupling theo
~MCT! @2# has played a leading role, interpreting and rat
nalizing some of the observations@3,4#, and achieving quite
acceptable numerical agreement in comparison to exp
ments@5–7#.

Recently a new type of glass has arisen as the focu
interest@8–13#. This has been called the attractive glass.
attractive glass we imply that the loss of ergodicity is driv
largely by strong short-ranged attractive interactions, in ot
words the ‘‘stickiness’’ of the particles to each other eve
tually dominates the thermal motions and the system free
Thus, close packing is no longer necessary for a glass t
stable and it transpires that such glasses can form at den
much lower than close packing.

Once having established the distinct nature of the att
tive glass phenomenon, it is unsurprising that new phen
ena should be associated with the system. For instance, M
predicts that for well defined values of the temperature
packing fraction, the repulsive and attractive glasses di
only by their dynamical properties~as opposed to structura
differences!. Many questions remained unanswered in t
arena and more research using different approaches mu
developed before one has great confidence in the conclus
drawn so far. Nevertheless, the basic results emerging f
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MCT seem reasonable, and are reproducible, using a va
of different input static structure factors@13#.

The situation in experimental studies is even less clea
may be that colloidal glasses driven by attractive interacti
have been observed and studied for some time, without c
recognition of their distinctive nature. Certainly some of t
reported kinetically arrested states in colloidal systems, u
ally identified as ‘‘gels,’’ appear to arise at densities cons
erably lower than close packing@14–16#. Given that such
observations appear to be associated with quite strong s
ranged attractions driven by depletion forces, or graf
chains onto larger particles, it would seem likely that inde
such systems are examples of those we currently discuss
the other hand, as yet, there appear to be no clear repor
colloidal glass-glass transition in the experimental literatu
but the typical logarithmic decay of density correlations th
MCT predicts to happen close to anA3 singularity @17# has
been observed in the past for the glass transition of so
polymeric systems@18,19#. More recently a logarithmic de
cay has been reported in a micellar system with short-ran
attractive interactions and this may be related to a proxim
glass-glass transitions as these authors point out@20#. The
clear recognition of two different glasses would be one cl
and unambiguous signal that a distinctive attractive gla
state has been observed. Since this is expected to be an
of considerable interest to experimentalists, it will be impo
tant to discuss those measurements that could differen
the glasses, and this is one aim of the present work.

In this paper it is our intention to discuss the mechani
properties of the glasses formed when repulsive and att
tive interactions are present, and where, under some co
tions, the latter may become dominant. We shall work with
the framework of the ideal MCT and present results for
linear elastic shear modulus at zero frequency,G8(v50),
and for the longitudinal stress modulus in the hydrodynam
limit, corresponding to zero frequency and long wavelengt
m0, to illustrate our point of view. The study of the elast
shear modulus has previously been addressed in@8#, but a
different potential is used there.
©2001 The American Physical Society01-1
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Our reasoning for presenting these results has two un
lying strands of rationale. First, we have outlined the int
esting features we believe to be present for colloidal syst
where there are strong short-ranged potentials. However
note that experiments in dense colloidal systems are far f
simple and the number of techniques that can be relia
applied to examine these questions are much fewer tha
dilute solutions due to multiple scattering and other limi
tions implied at high concentrations. Furthermore, when
works on the boundary between liquids and amorphous
ids there are further restrictions in the options for experim
tal techniques that may be applied. In fact, the mechan
responses of an amorphous material are amongst the
simple and reliable methods of characterization. Even
bulk shear and longitudinal moduli are quite helpful in form
ing an initial assessment of the material itself, and of cou
they are themselves amongst the simplest parameters ch
terizing the transition from a liquid to a glass and, as we sh
see, even between different glasses. Combined with this,
clear that most practical applications of amorphous mater
composed from colloidal particles will involve a strong i
terest in mechanical properties of the glass. Having said
this, the reader should be aware that many attractive gla
may be quite fragile and some thought will have to be
plied in finding systems and methods where measurem
can be made. In any case, these comments comprise the
strand of reasoning for our interest in the mechanical mo
of attractive glasses.

The second reason for our interest is quite different a
involves a deeper analysis of the basis of the theory that
use to describe glassy systems. That is, rarely is MCT
plied to a system simple enough that many issues can
worked out in detail but at the same time that there b
complete knowledge of the ‘‘phase diagram’’ and its dyna
ics. In our particular case, we shall study the square-w
potential model with very short-ranged attractions. Some
the basic predictions for structure and dynamics of t
model have been worked out in detail within the MCT fo
malism @13#. We have observed that the attractive glass
troduces a new richness into the study and it naturally
comes of interest to understand what presumptions MC
making about such phenomena. We shall be intereste
such questions as, what part of the physics drives the at
tive glass transition within MCT and whether this unde
standing can shed some light on the nature of the the
itself. Finally, as an aside we shall also seek to underst
which physical characteristics of the colloidal particle and
the whole system sets the scale for the mechanical prope
of a colloidal glass. Again, if MCT is correct, this will be o
considerable practical interest.

In the light of these comments it is now possible to p
ceed to introduce the fundamental equations that define M
and the mechanical responses that we calculate from it.

II. THEORY

Mode coupling theory provides a description of the stru
tural relaxation of super-cooled liquids. The variables of
terest are the normalized density correlators defined as
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fq~ t !5^rq* ~0!rq~ t !&/^urqu2& ~1!

whererq(t)5( j 51
N eiq•r j (t), with N being the number of par

ticles in the system. By using the Mori-Zwanzig formalism
it can be shown@2# that the equations of motion for th
variablesfq(t) are,

f̈q~ t !1Vq
2fq~ t !1nqḟq~ t !1Vq

2E
0

t

mq~ t2t8!ḟq~ t8!dt850

~2!

for Newtonian dynamics. The two quantitiesVq andnq are
respectively the characteristic frequency of the phonon-t
motions of the fluid and a term that describes instantane
damping, the latter arising from the ‘‘fast’’ contribution t
the memory function. They are defined as

Vq5
q2kBT

mS~q!
, ~3!

nq5n1q2 ~4!

and typically one choosesn151 in the calculations. Equa
tion ~2! is formally exact for a set ofN particles.

To describe the dynamics of colloidal suspensions, th
have been modified neglecting the inertia term and includ
the solvent contributions@21#. Thus, we have

f q̇~ t !1q2Dq
sH fq~ t !1E

0

t

mq~ t2t8!f q̇~ t8!dt8J 50 ~5!

whereDq
s is the Brownian short-time diffusion.

The crucial approximation of MCT consists of giving a
explicit factorized form for the memory kernel in Eqs.~2!
and ~5! as

mq5
1

2E d3k

~2p!3
V~q,k!fk~ t !f uq2ku~ t ! ~6!

and the vertex functions are the coupling constants of
theory,

V~q,k!5
r

q4
$q•~q2k!cuq2ku1q•kck%

2SqSkSuq2ku . ~7!

In the static limit t→`, independently on the type o
microscopic dynamics, the density correlatorsfq(t) tend to
a finite valuef q5^rq* (0)rq(`)&/^urq(0)u2&, known as the
nonergodicity factor, if the system is kinetically arreste
This loss of ergodicity for the density correlators is seen
the transition to a kinetic glassy state within MCT. Thus, E
~2! becomes in the static limit,

f q

12 f q
5

1

2E d3k

~2p!3
V~q,k! f kf uq2ku. ~8!

It is clear thatf q50 always corresponds to a solution of E
~8!. This corresponds to an ergodic state of the system
which the correlations decay for long times. For some cr
1-2
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cal values of the thermodynamic parameters~control param-
eters!, such as temperature and density, there appear bifu
tions of the solutions of Eq.~8!, that produce nonzero
solutions. These correspond to the nonergodic states o
system, and given that there is no positional order in
system we identify these solutions as glasses. The bifu
tions can be multiple, up to the number of control parame
of the system. Thus, when a bifurcation gives rise to m
than two solutions of Eq.~8!, there will exist multiple solu-
tions with finite nonergodicity factors. In this case, MC
predicts that only the state corresponding to the largest v
of f q is the long-time limit solution of the equation@2,22#.

With an input structure factor, we can now solve the MC
equations for the nonergodicity parameter, and it is poss
to calculate the ‘‘phase diagram’’ of the system, localizi
the regions in the thermodynamic parameter space where
system is in the fluid (f q50) or in the glassy state (f q.0)
and also some mechanical properties of the glass itself. N
that by ‘‘phase diagram’’ we mean here that the fluid a
glassy states of the system are identified, the latter be
nonequilibrium states of matter.

A particularly interesting physical quantity is the elas
shear modulusG8(v). From the shear viscosity for a collo
dal system@3,23#, it is possible to evaluate the elastic she
modulus within the MCT approximation in the limitv→0 to
give @8#

G8~f,T!5
d3

60p2E
0

`

dkk4S d ln Sk

dk
f kD 2

, ~9!

whereG8 is in units of (kBT)/d3, whereT is the temperature
of the system andd is the diameter of a particle.

Another property that can be examined by experimen
ists is the longitudinal stress modulusm0. We will discuss
only the hydrodynamic approximation of this quantity@3,24#,
that is easily obtained taking the limitsq→0 and t→` in
Eqs.~6! and ~7!, giving that

mq50~v50!5m05E
0

`

Vkf k
2dk, ~10!

where the long wavelength limit of the vertex function
given by

Vk5rSq50S Skk

2p D 2Fck
21

2

3 S k
]ck

]k D ck1
1

5 S k
]ck

]k D 2G .
~11!

It is possible to relatem0 to the velocity of sound in glas
~solid! compared to that in liquid at the transition line. Thu
we observe that the speed of sound in a liquid is given
terms of the compressibility of the liquid whilst the form
tion of a solid leads to a finite memory kernel at long tim
and consequently an incrementm0,

v`

v0
5A11m0 , ~12!
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where v0 and v` are, respectively, the limiting low- and
high-frequency sound speeds.

Since the longitudinal modulus is a close equivalent of
shear modulus, but for extensional distortions, it is natu
that we should seek to calculate and compare the two qu
tities. We would like to point out to experimentalists wh
may be interested in this field that the theory as applied
ratios of quantities at the transition may be quite well mo
eled by the theory and less dependent on model details.
therefore recommend some thought on how experiment
this type might be carried out.

We have solved@13# the MCT equations for the idea
glass-transitions~8! for a system of monodisperse colloid
particles, interacting via a square well potential, with a ve
narrow-range attractive well, defined as

V~r !5H `, r ,d

2bu0, d,r ,d1D

0, d1D,r

~13!

whereb5(kBT)21 with kB the Boltzmann’s constant andD
is the well width, which can be related to the small parame
e5D/(d1D).

To calculate numerically the equilibrium structure facto
S(q) of such a system, one can use the mean-spherica
proximation ~MSA!, Percus-Yevick, or other closure rela
tions for the Ornstein-Zernike integral equation@13#. Refer-
ence@13# compares many of the important features of t
statics and dynamics of these systems using MSA
Percus-Yevick~PY! approximations. In view of the good
agreements found between these closures, we shall
present only calculations based on the PY closure. The ph
diagram for different values of the well-width of the pote
tial has been presented in Ref.@13#. In particular, for the
mechanical results, we will focus our attention on the ca
where e50.03. Here we report in Fig. 1 more details an
present both the glass transitions as well as the liquid-
spinodal, which may be regarded as an approximation to
equilibrium phase diagram. This provides the reader with
overview of where we expect to find all the phenomena d
cussed later. Thus, in Fig. 1 we can see the curves labe
respectively,B1 representing the fluid-repulsive glass andB2
representing the fluid-attractive glass transition. In the in
we have shown in more detail the attractive-repulsive gl
transition curve with its end-point labeled asA3. Beyond this
point, the two types of glasses become indistinguisha
Also, the dashed curve in the low volume fraction regi
represents the gas-liquid spinodal calculated via an exp
sion in e around the Baxter potential@25,26# and in good
agreement with numerical calculations for the square-w
potential, at least to the right-hand side of the critical po
~larger volume fractions!. We comment here that the left
hand side branch of the spinodal is singular for a Bax
model because it corresponds to complex values of the c
acteristic parametersl, and also for such low packing frac
tions and temperatures the numerical PY solution of
square-well potential was not reliable. Thus, the only tr
meaningful branch of the spinodal in Fig. 1 is the ‘‘liquid
1-3
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branch that corresponds approximately tof>0.14, where
we estimated that the critical point is located correspond
to a critical temperature of approximately 0.3.

It is interesting to note that while the curveB1 is almost
vertical,B2 is largely horizontal and the two meet forming
nonzero angle. The fact that the repulsive glass-liquid tr
sition curve is vertical is ensured by the fact that classifi
tion is driven only by the hard core, which lacks any ener
scale. On the contrary, the attractive glass-liquid one, be
fairly horizontal, implies that there is a single wel
characterized energy scale that drives the glassification.

III. RESULTS

To discuss our results we shall frequently refer to
phase diagram in Fig. 1. Let us begin by looking at what is
first sight one of the more striking predictions of the calc
lations, the transition between two types of glasses and t
merging at an endpoint that has been labeled as theA3 point
@2#, since it represents a third-order singularity of the MC
equation~8!.

The reader should be aware that, within MCT, on t
transition lines, whether they be liquid-glass or glass-gla
the two states of matter do not have any difference in den
or in structure and are differentiated in terms of the non
godicity factorsf q . Since this is a nonequilibrium propert
of the system, we note that there is essentially no equilibr
quantity that establishes the difference in phases and the
der parameter must therefore be composed off q .

FIG. 1. Phase diagram of a colloidal system interacting vi
square-well potential, defined as in Eq.~13! with e50.03, solved
within Percus-Yevick closure relation and calculated by solving
MCT equation~8!. The horizontal axis represents the colloid vo
ume fractionf and the vertical axis the temperature in units
KB /u0. The curve labeled asB1 represents the fluid-repulsive glas
transition that is in agreement with the hard-sphere limit for MCT
large temperatures~vertical dashed line atf.0.516). The curveB2

represents the fluid-attractive glass transition. In the inset, i
shown in more detail the attractive-repulsive glass transition cu
with its endpoint labeled asA3. Also, the dashed curve in the low
volume fraction region represents the gas-liquid spinodal.
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Since the repulsive glass and the attractive glass il
trated in Fig. 1 and inset to that figure are differentiated o
by the changes of theirf q , it is therefore natural to ask wha
differences are implied in the shear modulus and other
chanical properties of these two glasses, and how these
ferences vanish as we approach the endpoint where the
glasses become identical. We have examined this ques
for the example of the shear modulus.

Thus, in Fig. 2 we plotG8 as a function of increasing
temperature for two fixed volume fractionsf50.539 672
andf50.544 052, both of them involving a crossing of th
glass-glass transition curve. For the smaller of these two
ume fractions, it is evident from the figure that upon cross
the transition, there appears a sharp discontinuity in the s
modulus. For the larger one, which is very close to the e
point value packing fractionfA3

crossing the curve, there i
negligible difference between the shear moduli of the t
glasses. Evidently, it is of interest to defineDG8, the differ-
ence inG8 found in the two glasses at the transition and
examine this as a function ofDf andDT, respectively, the
differences in volume fraction and temperature from th
endpoint values, which we evaluated asfA3

.0.5441 and

TA3
.1.099 75. We numerically find, over the whole ran

of the glass-glass transition, that the laws connecting th
two quantities are

DG8;~Df!p, Df5f2fA3
, ~14!

DG8;~DT!q, DT5T2TA3
, ~15!

wherep is approximately 0.3360.03 andq is approximately
0.3260.08. The errors in these estimates could be redu
with larger computational effort, but there do indeed app
to be power laws to high precision. These exponents can
explained by a simple argument. We know that near anA2

a

e

t

is
e

FIG. 2. Plot of the elastic shear modulusG8 as a function of
temperature forf50.539 672 ~black circles! and f50.544 052
~white circles!. The first value corresponds to crossing the gla
glass critical line, while the second corresponds nearly to the e
point A3 of this line.
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singularity f q is a solution of a second-order polynomia
while near anA3 point it is solution of a cubic one. This
implies

f q2 f q
A2;~eA2

!1/2, ~16!

f q2 f q
A3;~eA3

!1/3, ~17!

whereeAi
can be bothT2TAi

or f2fAi
. Thus, evaluating

the expression~9! for G8 in the proximity of the singularity
A3 gives, in the leading order, an exponent 1/3.

It will be of interest for experimentalists to seek the pr
posed phenomenon of glass-glass transition and to de
estimates of any exponents that arise. Amongst the mos
cessible of these is that of the shear modulus discus
above. However, we do note the reservation that it is lik
that there is some associated structural and density relax
at the glass-glass transition and this may disturb the sim
power law outlined above.

Evidently, a fairly practical comment that emerges fro
these results is that the repulsive glass stiffness with res
to shear is much smaller than the attractive glass one
indicated by the large vertical discontinuity shown in t
inset of Fig. 1. This reflects the fact that particles in t
attractive glass are bonded by the stickiness of the poten
whilst in the repulsive one there is no real bonding betwe
them, thus implying that they are more easily broken ap
under shear. Also, as expected, the attractive glass s
modulus increases considerably with the decrease of t
perature, the attractions between particles becoming m
relevant, whilst for the repulsive glass there are no sign
cant changes with temperature, there being no energy s
involved in its formation.

Having outlined our results for the shear modulus diff
ences between the two glasses, it is perhaps worthwhil
revisit the physical meaning and implications of these
sults. First, all the differences in mechanical properties h
come from the nonergodicity factor alone rather than st
structure since the two states have the same structure f
that is essentially the structure factor of the liquid to whi
the MCT glass is referred. It is, therefore, interesting to n
that the differences inf q’s between the two types of glas
reflecting as they do the nature and efficiency of the rel
ation processes at different length scales, lead to such l
differences in moduli.

Let us now turn to another part of the phase diagram
these systems. We have earlier alluded to the work by V
duin and Dhont@14# for a very short-ranged attractive co
loidal system where they found some nonergodic state
low temperature. These they interpreted as gel states b
line with the ideas laid out in this paper they might also
viewed as attractive glasses as it was already discusse
@8#. In fact, the horizontal portion of the glass-liquid curve
their phase diagram already is indicative that the ene
scale is playing a leading role rather than packing forc
Therefore, we believe that it will transpire that it is qui
feasible to prepare and study attractive glasses in some
tail.
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In particular, it will be possible to study many propertie
along the liquid-glass transition. We comment first that a
attempts to design colloidal particles with the appropri
well shape will most likely involve some uncertainties. Thu
the obvious methods of coating the spheres with some att
tive layer or using depletion forces in polymer solutions ca
not hope to exactly reproduce the parameters and shap
the square well. Therefore, the curve of liquid-glass tran
tions corresponding to the square well may be fit to exp
mental data. Though it may not be correct in all details
should be reasonably accurate in its behavior as a functio
packing fraction of spheres and in reproducing many of
attendant phenomena. Thus, irrespective of the exten
agreement between the square-well potential and the e
tive potential that is ultimately tested in experiments, w
may be fairly certain that some predictions of our theory w
be more robust than others. Amongst these we might ag
include the typical evolution of the mechanical properties
a function of packing fraction.

Therefore, it becomes of some interest to construct
evolution of G8 on the glass side of the liquid-glass trans
tion across an extensive range of packing fractions enc
passing all of what would be viewed as the attractive gla
to be able to compare these results with experiments. T
in Fig. 3 we present the curve ofG8 as a function off along
the attractive glass line, labeledB2 in Fig. 1. We note that
this curve extends to quite low volume fractions and that i
linear in a large range of volume fractions. In fact this is tr
for all those values off where the attractive interactions a
considered to be completely dominant. Ultimately the cu
turns downwards towards typical repulsive glass values
G8 when we go to higher volume fraction. Even so, w

FIG. 3. Plot of the elastic shear modulusG8 of an attractive
glass as a function of the volume fractionf along the liquid-glass
transition corresponding to packing fraction values up tof
.0.535 ~as in Fig. 1!. We note that the predicted value of th
volume fraction for hard spheres to undergo a glass transitio
fHS.0.52. However, the decrease of the magnitude of the sh
modulus starts before we reach this value, at approximatelyf
.0.48. This corresponds to the stiffest glass we can produce a
the transition curve.
1-5
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might have expected that the downward bending of the cu
would have happened very close to the critical hard sph
packing fraction,f.0.52, whereas it commences arou
f.0.485. Very similar characteristics for the shear modu
along the attractive glass transition line have also been fo
for the attractive Yukawa potential@8#.

Finally as a matter of curiosity let us draw attention to o
aspect of the shear modulus plot in Fig. 3. Consider the
circled points on the curve in Fig. 3. They correspond
states having approximately the same shear modulus
quite different packing fractions, i.e.,f1.0.34 and f2
.0.535. Thus, we represent in Fig. 4 the respective no
godicity parameters of the two states for comparison. I
interesting to note that whilst the range of the two is alm
the same as it should be since they both represent stat
attractive glass, the one corresponding to the lower pack
fraction exhibits a more pronounced nonergodicity of t
system at every length scale. The fact that we have the s
shear modulus is a reflection that both the nonergodicity
static structure factors are relevant for the modulus and
this case we see that they compensate each other so th
can ‘‘build,’’ from the same system two glasses with t
same stiffness with respect to shear, but having comple
different packings and different structure. This would be
interesting phenomenon if confirmed by experiments.

Now it is worth considering the MCT prediction tha
glasses can exist at volume fractions less than 10% as
cated in the phase diagram, Fig. 1. Certainly attract
glasses can and should form at much lower fractions t
repulsive glasses but we must not accept the results of M
blindly. Note carefully the limitation that MCT does not pe
mit the self-consistent relaxation of structure in the gla

FIG. 4. Nonergodicity factors at the glass transition correspo
ing to the circled points in Fig. 3 whereq is expressed in units o
particle radius (r 51). The full line represents the nonergodici
factor on the repulsive side and the long dashed line represent
state on the attractive side. The nonergodicity factors are certa
different, but it is of interest to consider Fig. 6 where we learn t
these difference in nonergodicity factor alone is sufficient to ca
the considerable softening of the glass as the volume fraction
ceeds its critical value off.0.48.
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phase and consequently the density cannot adapt to the
situation as the ergodicity is lost. The consequences of
have been outlined for the glass-glass transition but
should be aware also for the possibility for qualitatively m
taken predictions in the region of a liquid-glass transiti
where there is a metastable liquid-gas phase separation
Fig. 1. Thus we must acknowledge the tendency for sep
tion into more and less dense phases that could be supe
posed on the liquid-glass transition curveB1. That this does
occur has not been proved but if it did, our MCT calculati
would not accommodate it.

Given this concern, we have calculated the mean num
of bonded spheresnb to a central sphere at the formation
the attractive glass along the curveB2. We consider as suf-
ficient condition for bonding that the distance between t
particles is up to the attractive well width. Thus, it is easy
estimatenb by carrying out the integration over the pai
correlation function such that only those spheres fall
within the attractive well are included in the integratio
From the definition of the potential~13!, we then have

nb5E
0

(d1D)

rg~r !dr . ~18!

For convenience we also calculated one estimate of
mean coordination numbernc around a sphere irrespective o
whether the spheres are bonded or not.

Nevertheless, we have

nc5E
0

r*
rg~r !dr , ~19!

wherer * corresponds to our estimation of the first peak
the pair-correlation functiong(r ).

The mean bonding number is a well-defined quantity a
is calculated exactly here, whereas the mean coordina
number is not so well defined. The former may be relied
the latter is used only as a comparison to the mean bon
number.

Both results are plotted in Fig. 5 as a function of t
volume fraction along the curveB2. It is striking that both
curves are nearly linear. However, the interesting thing
note is that the mean bonding number atf.0.10 is around
1.5. Also, we can roughly estimate that only atf.0.17 we
find nb.2. Thus, it seems unlikely that extended mecha
cally stable structures can exist for such small bonding nu
bers. Indeed, a mean bonding number of 2 would im
polymeric structures and for bonding numbers a bit lar
than 2 we may have enough cross-links to establish a
work and finite shear moduli. Just how large the mean bo
ing number has to be before a finite shear modulus is
tained, we cannot say. Very simple arguments based
counting degrees of rotational and vibrational freedom, a
requiring that there be no zero modes of the energy indic
that the minimum number of bonds to form an extend
structure for a chemical glass should be about 2.4@27#. How-
ever these arguments have not been shown to be releva
the present case, so there is little more progress that ca
made now.
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The discussion should, however, alert the reader to
possibility that somewhere along theB1 line, possibly when
the bonding number is a little less than 2, the reduction
any further bonds in the system might cause it to decomp
presumably into a less dense and a more dense phase. T
remain open questions for the moment but as MCT beco
applied more to glasses driven by attractions, it will be i
portant to consider them in future.

Of course, another fundamental question that should
addressed in future is the applicability of idealized MCT
colloidal systems with attractive interactions. Indeed, wh
for hard-sphere-type systems the idealized theory has b
found in good agreement with experimental results, it is
yet clear whether for attractive systems, at lower densit
activated processes may become important so that hop
should be included in the theory for a better description
this type of systems. Our present opinion is that the ideali
theory is likely to be useful for moderate densities where
bonding number is somewhat larger than 2. We do not p
clude the possibility that for much lower densities, the the
may still be suggestive, and indeed there have been alre
attempts to interpret these regimes@8,10,11#.

Thus, all this discussion leads us to seek a somew
deeper understanding of exactly what the basis of the m
coupling predictions are. By this we mean, we seek to
derstand the essential features of the theory as it relate
attractive glasses. One of the points that we would like
probe a little more is to understand just how local MCT is
its understanding of the loss of ergodicity, and in its es
mates of the main features of mechanical moduli. The s
plest possible proposition would be that essentially w
knowledge of the number of bonds and strength of asso
tions between nearest neighbor particles, we would estim

FIG. 5. Plots of the coordination numbernc ~19! and the mean
bonding numbernb ~18! as a function of the volume fractionf
along the liquid-attractive glass transition lineB2. The two behav-
iors are nearly linear, except for small deviations, at low volu
fraction fornb . As discussed in the text, in this region wherenb is
less than 2, we question the existence of the attractive glas
predicted by MCT because there are not enough bonds betwee
particles to allow the formation of a rigid structure.
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a correct MCT transition and perhaps, even estimate a
rect mechanical response. We now seek to test this hyp
esis. We shall examine this question in two steps beginn
with the calculation of the nonergodicity factor that dete
mines the glass transition itself, then progressing to the sh
modulus.

For simplicity, we callq* the wave vector correspondin
to the first peak of the structure factor. We then procee
recalculating the liquid-glass transition using two appro
mations. First, we used the correct short-wavelength beh
ior of the structure factor for (q.q* ), in solving the MCT
equations~8! but using for the long-wavelength part of th
structure factor~i.e., q,q* ) the corresponding part of it fo
a packing fraction that we chose arbitrarily. We conside
both f.0.31 andf.0.39 obtaining no significant change
in the results. We found that the essential features of
trends and quantitative evolution of the transition are set o
by the short-ranged part of the structure factor, then irresp
tive of what we chose for the long-wavelength part of
Thus, length scales involving only the hard core and attr
tive well of a spherical particle are sufficient to determine t
glass-liquid transition within MCT. Indeed, we investigated
few points along the curveB2 and we also found that the
transition temperatures are reproduced within a few perc
error.

To confirm these results, we also tried to evaluate
curveB2 using an opposite strategy. We then used the c
rect long-wavelength part of the structure factor (q,q* ) and
as short-ranged part, the corresponding part for the s
values of packing fractions as before. This leads not only
much larger errors in the glass-liquid curveB2, but what is
more important, to the wrong evolution of that curve wi
volume fraction; this means that the curve was not o
shifted but also changed in its shape. We may therefore c
clude that whatever the full content of MCT, one can es
mate the location of the transition curve of the attract
glass to high precision by knowing only local informatio
about the particles around a central particle. Long-ran
effects, therefore appear not to play a central role in t
aspect of the MCT description. The same observation
been made earlier for the Yukawa model and for the squ
well potential, both solved within MSA@8,13#. Thus, this is
a general feature of the theory itself, independent on
model or the approximation chosen to solve it.

We now turn to another natural question about the pred
tions of MCT. After having analyzed what the dominant co
tributions are for the prediction of the location of the gla
transition, we want to investigate what is important in t
determination of the mechanical properties of the gl
within the theory. To do so, we still refer to the results of t
shear modulusG8 in Fig. 3.

Thus, we note that in Eq.~9!, there are evidently two
important contributions to the shear modulus, the nonerg
icity factor and the logarithmic derivative of the structu
factor. We may ask if only one of these features provides
main contribution to the shear modulus. To check this
may proceed as before, first retaining the correct struc
factor and using the nonergodicity factor of a chosen va
of packing fraction (f50.39), and then vice versa. Th
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question may be further refined by asking whether it is p
sible to further locate the main driving force of the she
modulus as being short (q.q* ) or long (q,q* ) length
scales.

The answer is striking. With almost quantitative accura
we find that the linear behavior of the shear modulus w
volume fraction, in the purely attractive region, which w
can define being in the range of volume fractions betw
0.17 and 0.4 originates solely in the short length-scaleq
.q* ) behavior of the structure factor as shown in Fig. 6. W
represent here the curve, already reported in Fig. 3, w
superimposed data obtained by using the chosenf q and the
true structure factor~crosses! and those obtained by using th
true nonergodicity factor and only the exact short leng
scale contribution forS(q) ~circles!. Thus, providing the
nonergodicity factor is finite and on the correct scale,
shear modulus is relatively insensitive across the whole
tractive glass region to its details, being only shifted by
small amount. We note that in the figure all the sets of d
are coincident atf50.39 since this is the chosen value
reference for the different cases. Since we find, as bef

FIG. 6. Plot of the elastic shear modulusG8 as a function off,
as in Fig. 3~full line!. Superimposed we have plottedG8 calculated
by using an incorrect referencef q ~see text! and the correct struc
ture factor~crosses!. Results obtained by using the correct non
godicity factor and only the exact short length-scale contribution
S(q) have been plotted using circles. Together these approxim
curves indicate that for most of the range of stability of the attr
tive glasses its properties are dominated by the short length sca
the structure factor. Also, providing the system is nonergodicf q

.0), the degree to which it is so is not a very important parame
in determining the mechanical properties we discuss. Howeve
higher densities the shear rigidity of the glass begins to decr
again as we approach a repulsive glass. This behavior canno
described as above, and we now need to use the correct noner
factor, and the details of the structure factor now becomes
relevant in determining shear rigidity. Inset: Plot of the elastic sh
modulus versus the number of bondnb , showing an almost linea
dependence. Here we see that for the true attractive glass the
rigidity is close to bring linearly dependent on the number of ne
est neighbors within the range of attraction.
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that only the short length-scale picture of the system is re
involved in the determination ofG8 ~circles!, we can explain
the linear behavior of the shear modulus with packing fr
tion in the attractive region, being directly related to t
number of bondings. Thus, we representG8 in function ofnb
in the inset of Fig. 6 and we show that there also exist
linear relation between them.

Finally, we turn to analyze what happens for the pheno
enology of the shear modulus at higher packing fractio
beyond what we believe is the pure attractive region, wh
G8 undergoes a rather rapid decline. We have pointed
already that along the glass-liquid curve in Fig. 3 this rap
decrease of the shear modulus happens as we approaf
.0.48, which is a value quite below the close-packed str
ture appropriate for the hard core. It may be argued that
phenomenon is hardly surprising since we know that fina
the shear modulus must decrease to values characteristic
repulsive glass. These are much smaller since, as we
earlier pointed out, there are no attractive interactions and
effectively bonded particles to the central one. However, i
nevertheless interesting to understand why the shear mod
softens quite dramatically at that particular packing fract
and by what means the effective attractions are be
screened in the system in this region of densities.

To understand this point, we have studied the thermo
namic pressure for a square-well potential, given in R
@28#. In particular, we have examined the pressure and c
pressibility of the liquid along the glass-liquid curve in ord
to exclude the possibility that there be any anomalies in
liquid itself in the relevant region. We found no anomali
within the PY approximation in the region of packings fro
approximately 0.45 up to beyond the endpoint valuefA3

. It
is then interesting to note that whilst the liquid is perfec
normal, the proximate glass undergoes this softening at w
defined values off andT corresponding to the decrease
the shear modulus. In essence we find that the softenin
the glass, whilst it certainly originates in cancellations b
tween hard core and attractive parts of the potential as
density increases, occurs mechanistically within the M
memory kernel.

To be more precise, we have used the same strategy
the purely attractive region to examine the different con
butions of the structure factor and of the nonergodicity fac
to the shear modulus. So, in Fig. 6 the data represented
crosses, corresponding to the correct structure factor an
fixed arbitrary nonergodicity factor, are also represented
higher volume fractions. It is evident that their linear beha
ior, entirely due to the structure factor, persists with incre
ing density. Conversely, by a similar analysis, where
structure factor was chosen arbitrarily and the nonergodi
factor was the correct one, we have found that the princ
origin of the decrease in the modulus is the change in
nonergodicity factor since in this region it is changing from
characteristic attractive to a repulsive form. The smaller
tegral resulting in Eq.~9! reflects the fact that the attractiv
glass is less mobile due to the formation of attractive bon
Thus, it can only be the nonergodicity factor, solution of t
MCT equation~8!, which is responsible for the softening o
the glass.
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We now turn our attention to the behavior of the longit
dinal stress modulus. We have already shown that it pres
a discontinuous behavior, similar to the elastic shear mo
lus, upon crossing the glass-glass transition in@13#. Now we
showm0 along the curveB2, i.e., along the attractive glass
liquid transition line in Fig. 7, on the glass side of the tra
sition in the same way as we did for the shear modulus.
conclude that for increasing packing fraction, though
glass becomes more rigid with respect to shear, reachin
maximum atf.0.48, the longitudinal modulus decreas
continuously along that same curve coming close to its ch
acteristic liquid value very close to the point where the t
curvesB1 and B2 meet, corresponding approximately tof
.0.536. At first sight this seems counter-intuitive since
expect that the extensional rigidity should increase with d
sity, at least up to that density where the elastic shear c
stantly increases.

If we examine the longitudinal modulus as a function
density, for temperatures that cause the system to be w
the repulsive-glass region only, the normal expectation
increased longitudinal modulus with increasing density
confirmed as illustrated in Fig. 8~a!. In Fig. 8~b!, instead, we
have the opposite behavior of the longitudinal modulus w
density for a much lower temperature than in Fig. 8~a!. In-
deed, from Eq.~10!, it is clear that the modulus depends o
the zero-momentum limit of the structure factor, appear
as a prefactor, and the data correspond to a temperatur
which the system passes very closely to the critical poin
spinodal curve of the underlying liquid-gas transition.
fact, MCT implies that the long length-scale associated w
the proximate liquid, when it is near a critical point, or ot
erwise the underlying spinodal is quenched into the so
glass because both liquid and glass have the same stru
factor. Within MCT the large modulus in the attractive gla
region therefore derives essentially from this large quenc
correlation length in the glass rather than any microsco
interaction. We note that there is no such quenched l
length-scale dependence implied by the shear modulus e
in the formula~9! or from the results showed in Figs. 3 an

FIG. 7. Longitudinal stress modulusm0 as a function of the
packing fractionf along the part of the curve labeledB2 in Fig. 1
corresponding to the transition between an attractive glass a
liquid.
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6. In fact, as we showed earlier, the shear modulus in
attractive region is mainly determined by nearest neigh
adhesions. The striking difference in the behaviors of the t
modulii is an interesting prediction of MCT when applied
attractive glasses. Possibly some of this variation origina
because long length-scale structures are quenched into
glass. Whilst we do not know if it is true in nature, the stro
distinction between longitudinal modulus and shear modu
along the liquid-glass curve will be readily testable in expe
ments on colloidal systems.

IV. CONCLUSIONS

We have studied the kinetic glass transitions of partic
with a model square-well potential using mode coupli
theory. This interaction potential should, we believe, be
reasonable approximation to that found in particles w
grafted chains and systems with strong depletion inter
tions. All nontrivial results arise when the attractive piece
the interaction potential is strong, but of very short ran
and we have studied a typical example of this type. Based
this, we have been able to describe some mechanical p
erties of two types of colloidal glasses, the one result
mainly from attractive and the other mainly from repulsi
interactions between particles. We and others@8,9,13# have
earlier proposed a distinction between the two kinds
glasses based on their dynamical behavior However, in
paper we have shown that this difference may be pro
experimentally using the difference in mechanical proper
and that there are exponents that describe the mergin
these glasses into a single glass beyond some critical den

a

FIG. 8. ~a! Longitudinal stress modulusm0 as a function of the
packing fraction along the isothermT50.7 . ~b! Same as graph~a!
but along the isothermT50.3.
1-9
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E. ZACCARELLI et al. PHYSICAL REVIEW E 63 031501
In general terms, glasses dominated by attractions ha
stronger rigidity under shear than those originating sim
from packing forces.

Also, we have studied the behavior of the zero-freque
elastic shear modulusG8 and the longitudinal stress modulu
m0 along the liquid-attractive glass transition curve. Besid
being of intrinsic interest, this part of the study was chos
in the belief that comparison to experiments will be mo
reliable along this curve and less dependent on model po
tial details. The predictions are striking. This is a positi
feature since even confirmation of trends will be of so
interest in evaluating the MCT approach to these system

At lower packing fraction where we believe attractions
be completely dominant, there is a linear increase of
shear modulus with packing. This reflects the fact that a
the mean number of bonds to a particle in the system is fa
linear in f and the only relevant physical mechanism
determine the shear modulus in this region of the phase
gram occurs at short length scale. We have argued that
the shear modulus is determined by nearest-neighbor a
sions. As an aside, we note also that within MCT the attr
tive glass-liquid transition curve itself is essentially det
mined by the same factors as those determining the s
modulus.

On the contrary, at higher values of packing fraction,
shear modulus decreases quite dramatically towards typ
repulsive glass values. This phenomenon originates from
changes in the nonergodicity factor that compete in Eq.~9!
with those of the structure factor and lead the system
soften with respect to shear. The implication is that th
should be a maximum of the shear modulus along the liqu
glass transition.

Now we turn to the longitudinal modulus of the syste
Here the result is quite different from that for the she
modulus. Along the glass-liquid transition curvem0 de-
creases with increasing density. We have observed tha
e

y,
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transition curve passes close to the critical point and so
portion of the spinodal of the underlying liquid-gas transiti
and consequently the input structure factor at long wa
length is very large. The prefactor in formula~11!, therefore,
becomes very large. The physical implication is that lar
scale density fluctuations quenched into the glass cau
large increase in the longitudinal modulus and the longitu
nal modulus is dominated by these for much of the attrac
glass regime.

We note, in passing that MCT does not always reliab
predict the stability of the attractive glass. By this we me
that when we check the mean bonding number to a part
in what has been predicted to be a glass, we sometimes
that this number is even less than 2. We conclude tha
these cases MCT is overemphasizing the stability of
glass, probably for a variety of reasons. In any case, we
this independent calculation as a rough check to exclude
gions of MCT glass that are clearly unphysical. It will b
important to address these issues in future.

There is no doubt that the model and the means by wh
we have studied it are simple and there are numerous l
tations implied thereby. Nevertheless, the model is in so
sense canonical in that it contains the essential physical in
of strong short-ranged interaction and repulsion. We beli
that it encompasses many essential ideas regarding the
chanical properties of colloidal glasses and we have
these out for consideration by further theoretical, but mai
experimental researches.
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